
less coordinates; R0, minimum cross section of the region of integration; R, coordinates of the lateral boundary 
of the region over the r axis; L, length of the region of integration over the x axis, 
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DIFFUSION SLIP OF A GAS 

II. APPLICATION OF THE METHOD OF THE 

THERMODYNAMICS OF IRREVERSIBLE PROCESSES 

S. F. Bakanov, B. V. Deryagin, UDC 533.72 
and V. I. Roldugin 

A method is proposed for the rmodynamic  calculat ion of the diffusion sl ip coefficient.  

A s y s t e m  of equations was obtained in [1] to de te rmine  smal l  complements  to equi l ibr ium (Maxwell) 
dis t r ibut ion functions for the components  of a b inary  gas mixture  flowing slowly in a p lane -pa ra l l e l  channel 
when the t e m p e r a t u r e  and p r e s s u r e  of the gas a re  held constant.  This s y s t e m  was then solved on the a s s u m p -  
tion that the concentrat ion of one of the components was t r iv ia l .  This approximat ion  made it poss ib le  to con-  
ver t  the s y s t e m  of eight equations into two s y s t e m s  of four equations each,  comple te  the analyt ical  solution 
to the p rob lem,  and calcula te  the diffusion sl ip coefficient  KDS by d i rec t ly  computing the mean mass  veloci ty  
of the gas resul t ing  f r o m  concentra t ion gradients  of the mixture  components .  

Also of in te res t  is another  method of calculat ing the sl ip coeff ic ients ,  based on the use of the methods 
of the the rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  [2, 3]. Co r r ec t  rea l iza t ion  of this method - apar t  f r o m  a 
pure ly  fo rmal  proof  of the d i rec t ly  obtained r e su l t  - makes  it poss ib le  to ex t rac t  impor tant  informat ion on the 
physical  nature of the phenomenon and opens up poss ib i l i t ies  for  exper imenta l  m e a s u r e m e n t  of the effect  on a 
new bas i s .  

1. We will examine the p rob lem of the flow of a b inary  mix ture  of gases  in a p lane -pa ra l l e l  channel 
with a dis tance 2d between the plates .  Let the plates fo rming  the channel be brought into re la t ive  motion of a 
veloci ty V by a force  F. Given constant  p r e s s u r e  and t e m p e r a t u r e  in the channel,  if we c rea t e  a gradient  in 
the concentra t ion of the components  of the mixture  in the channel,  then the total ent ropy produced in such a 
s y s t e m  may  be wri t ten  in the f o r m  

F-V 
AS = - + k < u~-- u~ > vn~, (1) 

T 
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where <u i-u2> is the difference in the velocities of the mixture components integrated over the channel cross 
section; V = VI-V 2, relative velocity of the plates; F, force acting on a unit area of the surface of the plate i; 
nl, number of molecules the first type in a unit of the volume. 

Proceeding on the basis of Eq. (i), ~Ve can write the following phenomenological equations of motion: 

F 
V = Lll  ~ q- L12vnl, 

l 

F 
/e ( Ul-- U2 > = L~I ~ -~ L22Vn1, 

(2) 

Meanwhile, in accordance with the Onsager principle, the relation between the kinetic coefficients I~2 = L2i 
should be satisfied. 

It can be seen from the first equation of (2) that relative motion of the plates may also occur in the ab- 
sence of external forces if there is a gradient in the number of particles of the mixture components directed 
along the channel. The velocity associated with the relative motion can be determined by assigning a gradient 
for the concentration of the components and finding the molecule distribution function from the Boltzmann 
equation. Here, in the case where the mean free path of the molecules is much shorter than the distance be- 

tween the plates, V is associated with the difference in the velocities of diffusion slip of the gas relative to 

the first and second plate. 

We can also take an indirect approach - use the symmetry properties LI2 = L21. In the last case, it is 

necessary to determine the value of <ul-u2>, resulting from the relative motion of the plates under the in- 
fluence of the force F. This approach will also be used below to calculate the diffusion slip velocity. 

2. Finding the relative velocity of the components in the given formulation reduces to solving the Cuett 

problem for a homogeneous gas mixture. We will place the origin in the middle between the plates in such a 
way that the top plate moves in the positive direction of the z axis, directed along the channel, at a velocity 
V/2 and the botiom plate moves at the same velocity in the opposite direction. 

Again, as in [I], we will limit ourselves to the case of a small addition of the second component, i.e., 

we will assume that the inequality n2/n << 1 is satisfied. Let us represent the corrections ~0i(x, ei) to the 
equilibrium functions fi (~ in the form of expansions [i] (e i is the dimensionless velocity of molecules of type 

i; the x axis is directed across the channel): 

1 (3) 

where Pk(Ci) are certain velocity polynomials; ak(i) are functions which must be determined. In accordance 

with the assumption of a trivial number of molecules of the second type, we set ak (I) = ak0 (l) + (n2/n)~k" Then 
system (4) from [i] reduces to two systems. The first (corresponding to n2/n = 0) has the form 

3 [ 0 ,,,(,)~ (4) 
~ Nzk a ~ k  j a,~P (x) = 0, ! = 0 - -  3. 

k = 0  

This system of equations will contain functions describing the behavior of only the first component and, in the 
approximation being examined, it coincides with the corresponding system for the flow of a simple gas [4]. 
The second system, obtained for ak (2) with allowance for the first nonzero approximation of n2/n, is as follows: 

[ k  ) - J| = o, o - (5) 

T h e  boundary conditions have the form 

a]i) (d) ei [a~oO (d) -}- 2 uoil, (6) 
2 - -  si 

2 - - e i  

707 



where  e i is the f r ac t ion  of m o l e c u l e s  of type i d i f fuse ly  re f l ec ted  by the channel  wall ,  u0i = 1 /2  V/~rg-kT----/'-~. 
It is e a s y  to see  that  the boundary  condit ions for  each  of the components  a r e  independent.  

The solut ion of s y s t e m  (4) with boundary  condit ions (6) is known. We p re sen t  the r e su l t  obtained in [4] 
below: 

a(1) = / AkX "@" [~h sh (z0x, k = O, 2, 
~0 [ A ~ + ~ u  ch %x, k = 1, 3, (7) 

where  

4 V ) a0 rt (4 - -  a) 2 V~o~q'(21) Z~ 1) - - , ~ )  ; 

A0 2 '"(1) A3; A~ A~=0;  = -  e~[3 = - 

% 2 ' 

~3 = 4 ~1 U0--1 ; A3 = - -  ~3 ch %d + e-----!----~ ~ sh ~0d; 
a 2 - -  81 D 2 - -  et 

r ( ) 1 ( e, [3 s 4 sh .0d)  " ea 4oCla d cha0d el ~s sha0 d + ch%d 

The solut ion to s y s t e m  (5) is the supe rpos i t i on  of the gene ra l  so lut ion of  the homogeneous  Sys t em and the 
p a r t i c u l a r  solut ion of the inhomogeneous s y s t e m .  F o r  the f i r s t  we have 

2 t s h i ~ x '  k = 0, 2, (8) 
a~2) = /~=IC~'&Y tcha~x,i k 1, 3, 

where  a 1 and oz 2 a r e  roo t s  of the c h a r a c t e r i s t i c  equat ion of s y s t e m  (5). It should be noted that  the roo t s  a j  
and coeff ic ients  T kj coincide with the c o r r e s p o n d i n g  values  in [1]. 

The p a r t i c u l a r  solut ion of the inhomogeneous  s y s t e m  is the sum of the d i s t r ibu t ion  functions in the gas 
volume and in the Knudsen l a y e r ,  and the comple te  solut ion of s y s t e m  (5) is t h e r e f o r e  wr i t t en  in the f o r m  

Bhx + fk sh %x + ~ CHki sh a~x, k = 0, 2, 

a(h 2 ) ~_  ] 
B k + [ h c h a o x + Z C j T k j c h a j x ,  k = l ,  3, 

i 

(9) 

where the coefficients fk are the solution of the system 

3 

( K s N ~ o  - -  ~4~ ~)  h = ~, 
h~0 

and the cons tan ts  Cj a r e  found f r o m  boundary  condit ions (6). 

The quant i t ies  13 k and G l have the f o r m  

V [ ~ ~(1)  Bo = ml Ao, B 3 =  A3 ,~so~la ,.(22) 
m 2  n lvl t 3 

V ms Mi] 2) ] ml A~(22. ) 7 
~n13 

BI = Bs = Ga = O, G ~ 1 Ks [As (__~.~_ Aj(~2) ,.(12)'~] = - - - .  lrAO0 ~ 2 lV122 / , 
2 n 

1 Ks' Aj(m) 
iv131 

n 

,,~o2 - - 2  M(2~ 21 . 
2 n 

It should be noted that  the solut ion to  (9) was obtained at d i f fe ren t  values  of C~o, c~1, and a2- A g r e e m e n t  of ao 
with a t o r  a2 is a spec ia l  ca se  of l i t t le  i n t e re s t ,  while c~ t = c~ 2 is poss ib le  only under  the condi t ion that  the 
m a s s  of the molecu les  of the f i r s t  component  be equal to ze ro .  
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TABLE i. Diffusion Slip Coefficients at e I = e 2 = 1 

t721 
.h+m~ 

0,i 
0,2 
0,3 
0,4 
0;5 
0;6 
0,7 
0,8 
0,9 

1,2 0 , 2  

6,45 
2,84 
1,49 
0,828 
0,456 
0,207 
0,0540 

--0,0433 
--0,120 

0 ,4  

6,56 
2,72 
1,39 
0,746 
0,388 
~),158 
0,0162 

--0,0689 
--0,127 

0 , 6  0 ,8  

6,35 5,80 
2,50 2,17 
1,22 1,00 
0 620 0,454 
o,288 ] o,158 
o, 08021--0, o194 

--0,0421,--0,118 
--0,II0 --0,165 
--0.143 --0,171 

1,0 

5,00 
1,74 
0,718 
0,248 
0,00 

--0,14l 
--0,212 
--0,233 
--0,210 

3,97 
1,22 
0,378 

0,0027 
--0,187 
--0,285 
--0,323 
--0,315 
--0,261 

1,4 

2,73 
0,606 

--0,0189 
--0,283 
--0,403 
--0,452 
--0,452 
--0,410 
--0,321 

1,6 I 1,8 

t.29 --0.347 
--0,101 --0.900 
--0,474 --0,988 
--0,609[--0,977 
--0,650[ 0.927 
--0,642 ] --0,856 
--0,598 I --0,762 
--0,519 --0,461 
--0,391 --0,470 

3. Let us now proceed to the calculation of the velocity of diffusion slip. The relative velocity of the 

c o m p o n e n t s  of  the  m i x t u r e  
d 

<.,_,,.>:;..r-, ;,,,,,.,v..v._ ' ;-v -' .... , .  % .dv J (lO) 
k nl n2 

- -d  

after substitution of the expansions (3) of the functions q~i in (i0) may be expressed through the coefficients 
ak(i)  in the  fo l lowing  m a n n e r :  

d 

8 ~mt . . . .  m~ (11) 
- -d  

= 8--rim 1 2 -,,,oo""n)~2) ~ 3 ) l - a "  

In ob t a in ing  the  l a s t  equa t ion ,  we used  the f i r s t  equa t ion  of s y s t e m  (5) and Eqs .  (7) and (10) f r o m  [1]. 
fo l lowing  e x p r e s s i o n  is  ob ta ined  fo r  F: 

f = ~ vlXvlz[~~ 1 = rtk._._~T4 A3 

The 

(12) 

(the small complement proportional to n2/n is discarded). From this and Eq. (2) we have 

�9 9 
kT aZK~ ( a~ 2' ~- a~ (2)lId 

L~., = 1 / -  8 ~ml nZM(olo 2) o ][-a 

(13) 

while the relative velocity of the plates resulting from the concentration gradient in the absence of an external 

force is equal to 

2 kT vnaK~ a~ 9-) d) a~ 2) (14) V = -~ -  ml A_.Z aa(12) • .a~ 2) (d) + a(32) ( d ) - -  ( - -  + ( - -  d) , 
8,~ ~vlO0 

i. e., it is the difference of certain velocities calculated on the surfaces of the first and second plates, res- 

pectively. 

It is apparent from (14) that if the accommodation coefficients of the molecules on both surfaces are the 

same, then no relative motion of the latter under the influence of a concentration gradient will occur. 

The velocity of the plates relative to the gas can be obtained from the following reasoning. In the case 

c~jd >> 1 (no overlapping of the Knudsen layers), as already noted, the relative velocity of the plates V is the 

difference between the velocities of slip of each of them relative to the gas: V = Uek(2)-Uck0). From this and 

Eq. (14), the diffusion slip velocity uDS is equal to 

( ' ] f f~ a ~ 2 ) ( d ) l + C  o (15) = U(t) n 2 let VnlK.2 a! 2) (d) ~ 
u~ ~* = - -  -2-  ml A3nZA/I~o~ 2) .' ~ . 

where C O is a constant independent of the character of the interaction of the gas with the surface of the solid. 

It is therefore the same for each surface. To determine its value, we will use the result from [5]. At ei~ 0, 
the slip velocity is equal to 
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UDS (st --~ 0) = nnh D12 
phi 

11// - m l E2 1 - -  

1~ 2 |//. 1"/'1~ 
1 

Or,  cons ide r ing  the condi t ion n2/n 1 <<1 and a s s u m i n g  Pl >> P2, we have 

Ups (e~ -+ O) = Dl~ ( 
17~ 2 82 

vnl .  (16) 

V In ha. (17) 

Under  the s a m e  condi t ions ,  Eq.  (15) takes  the f o r m  

Ups = -  Di2 I / /  m2 a_, v l n n l §  (18) 
m l  ~;1 

where, in accordance with the first approximation of Chapman-Enskog, we have introduced the diffusion co- 
efficient DI2 (see [i]). 

Comparison of (17) and (18) gives us the constant in Eq. (15). Finally, we have 

UpS KDS DI+V In na = Da~v Inn 1 1 /2  
17L +, 2 8+ E1 

. . . . .  " - X 

+ - mi 8 t 2 82 

X 

F o @ 
El 

2-- E 1 

E9 Eo 2 (' 

It is readily seen that the coefficients of diffusion slip obtained by direct [i] and thermodynamic calcula- 
tions are of the same form. Meanwhile, the coefficients Fi, Q0, and Q2 in these calculations are expressed 

in the same manne~ithrough the parameters 7kj. Agreement of th:l~oeffi~/ffntSeH1*,luHe 2.' and QI* with H I, H~, 
and QI obtained in [ ] was established by calculating hem numeric y at d' er va u s of mass and cross 
section for the gas-phase molecules. 

The final result confirms the conclusion reached in [6] Concerning the method of constructing a system 
of moment equations, making it possible to exactly satisfy the Onsager reciprocal relations even using an ap- 

proximate solution. 

Table 1 presents values of KDS for different ratios of molecule mass and diameter. 

NOTATION 

VI, V2, velocities of first and second plates; k, Boltzmann constant; T, gas temperature; D12, inter- 
diffusion coefficient of the gas mixture; ~km(i), Mkm(iJ), moments of the Boltzmann collision integral; KDS 
and uDS, coefficient and velocity of diffusion slip; ni, number of particles per unit volume; mi, mass; a i, 
diameters; el, aceoromodationcoefficients of the type i molecules. 
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THERMODIFFUSIOPHORETIC CAPTURE OF AEROSOL 

PARTICLES IN A PLANE CHANNEL WITH NONUNIFORM 

TEMPERATURE 

M. F. Barinova and E. R. Shchukin UDC 533.72 

The a r t i c l e  t h e o r e t i c a l l y  s tud ies  the p r o c e s s  of c a p t u r i ng  a e r o so l  p a r t i c l e s  f rom a l a m i n a r  

s t r e a m  of a b i n a r y  gas m i x t u r e  inhomogeneous  in t e m p e r a t u r e  and c o n c e n t r a t i o n  p a s s i n g  
through a p lane  channe l  with n o n u n i f o r m  t e m p e r a t u r e .  

Aerosol particles are settling in a channel through which passes a stream of a binary gas mixture; its 

first component consists of molecules of some volatile substance condensing on the lower plate with a temper- 
ature T h that is lower than the temperature of the upper plate T 0. We examine the case of steady-state motion 
of the gas stream where we may neglect the influence of the inlet part on the distribution of mass velocity, tem- 

perature, and concentration of the components of the gas mixture. The theory of capture is devised for gas 

mixtures with similar molecular masses where the coefficients of viscosity, thermal conductivity, and diffu- 
sion depend only weakly on the concentration of the substances of which the gas mixture is composed. Among 
such gas mixtures is the steam-air mixture consisting of molecules of air and water vapor. 

The aerosol particles entering the channel begin to move toward the surface of the lower plate along a 

path described by the differential equation of motion of aerosol particles 

dx/v~ = dz/vz  , (1) 

where v x and v z are the x- and z-components of the velocity of the particles. The velocity of steady-state 
motion of the particles relative to the channel walls is composed of the velocity of mass motion of the gas u, 
the speed of diffusiophoresis due to nonuniform distribution of the concentration v D [I, 2], the velocity v T due 
to nonuniform distribution of the temperature T [i, 2], and the gravitational velocity Vg: 

D,JD v 2 R ~ 
v = u + vD -~ vr + vg : u gradct - -  [r T grad T - - - -  [ggp~ - -  nx, (2) 

c2 9 9v 

where  c 1 = h i / n ;  c 2 = n2/n;  n = n I + n2; n 1 and n 2 a r e  the c o n c e n t r a t i o n s  of mo lecu l e s  of the f i r s t  and second 
kind,  r e s p e c t i v e l y ;  m 1 and m2, m o l e c u l a r  m a s s e s  of the f i r s t  and second componen t ,  r e s p e c t i v e l y ;  Pi,  d e n s i t y  
of the s u b s t a n c e  of the p a r t i c l e ;  nx,  un i t  vec to r .  The s c a l a r  coef f ic ien t s  fD, fT,  and fg depend on the geo-  
m e t r i c a l  d i m e n s i o n s  of the p a r t i c l e s ,  on the phase  c o m p o s i t i o n  of the s u b s t a n c e  of the p a r t i c l e s ,  on cl ,  c2, T,  
and on the m o l e c u l a r  p r o p e r t i e s  of the gas m i x t u r e .  We do not p r e s e n t  h e r e  the exp l ic i t  f o r m  of the e x p r e s -  
s ions  for  the coef f ic ien t s  fD'  fT '  and fg because  in  the g e n e r a l  c a se  these  e x p r e s s i o n s  have a f a i r l y  c u m b e r -  
s o m e  fo rm.  The e x p r e s s i o n s  for  fD, fT,  and fg can  be found in [1-4]. In the model  of gas flow examined  h e r e ,  

the d i s t r i b u t i o n s  of Ux, Uz, T, and c 1 depend only on the x - c o o r d i n a t e .  T h e r e f o r e  v z = Uz, and v x is d e s c r i b e d  
by the e x p r e s s i o n  

d In T 2 R ~ •  = u x + f D D 1 2  d ln (l - -  ca) - -  'vdr dx 9 gfgPi  9 v v~ = u~ + vD~ § v r  . . . .  d x  __ - -  _ _  (3) 
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